1. Mechanics
  2. 1. Units, Dimensions and Errors
    2. Vectors and Scalars
    3. Motion in a Straight Line
    4. Projectile Motion
    5. Newton's Laws of Motion
    6. Friction
    7. Work, Energy, Power and Collision
    8. Circular motion
    9. Rotational motion
    10. Simple Harmonic Motion
    11. Gravitation
    12. Elasticity
    13. Surface Tension
    14. Fluid dynamics and Viscosity
    15. Hydrostatics
  3. Heat and Thermodynamics
  4. 16. Thermometry
    17. Thermal expansion
    18. Calorimetry, Change of State and Hygrometry
    19. Gas Laws and Kinetic theory of Gases
    20. Transmission of Heat
    21. Thermodynamics
  5. Sound and Waves
  6. 22. Wave
    23. Superposition of Waves
    24. Stationary/ Standing waves
    25. Doppler's effect and Musical sound
  7. Optics
  8. 26. Reflection of Plane and Curved Mirrors
    27. Refraction at Plane surfaces and Total internal reflection
    28. Refraction through prism and Dispersion of Light
    29. Refraction through Lenses
    30. Chromatic abberation in Lenses, Optical instruments and Human eye
    31. Velocity of Light
    32. Photometry
    33. Wave nature of Light
  9. Electrostatics
  10. 34. Charge and Force
    35. Electric Field and Potential
    36. Capacitance
  11. Electrodynamics
  12. 37. Electric current
    38. Heating Effect of Current
    39. Thermoelectricity
    40. Chemical effect of Current
    41. Meters
  13. Electromagnetism
  14. 42. Properties of Magnets
    43. Magnetic effects of Current
    44. Electromagnetic induction
    45. Alternating current
  15. Modern Physics
  16. 46. Cathode rays, Positive rays and Electrons
    47. Photoelectric effect
    48. X-rays
    49. Atomic structure and Spectrum
    50. Radioactivity
    51. Nuclear physics
    52. Semiconductor and Semiconductor devices
    53. Diode and Triode valves
    54. Logic gates
    55. Relativity and Universe
    56. Particle physics
Mechanics
14. Fluid dynamics and Viscosity
1. An aeroplane of mass 3×10⁴ kg and total wing area 120 m² in level flight. The pressure difference between upper and lower wing surfaces (kPa) is (g=10 m/s²):

[BP 2014]

  • 2.5
  • 5.0
  • 10.0
  • 12.5
2. Viscosity of liquids and gases with temperature increase:

[BP 2013]

  • Decreases and increases
  • Increases and decreases
  • Increases
  • Decreases
3. Graphical representation of cork rising from bottom to float in water:

[BP 2011]

  • Linear velocity increase
  • Exponential velocity decrease
  • Constant acceleration
  • Terminal velocity curve
4. Velocity ratio (V₁/V₂) for efflux at h/2 and h in immiscible liquids (ρ and 2ρ):

[BP 2009]

  • 1/√2
  • √2
  • 2
  • 1/2
5. Radius of 900 kg/m³ liquid drop with η=1.85×10⁻⁵ Ns/m² and v=2.76×10⁻⁴ m/s:

[MOE 2014]

  • 1.6 μm
  • 1.6 mm
  • 1.6 cm
  • 1.6 nm
6. Terminal velocity of object in vacuum vs. 100 m/s in liquid:

[MOE 2010]

  • <100 m/s
  • >100 m/s
  • =100 m/s
  • Cannot attain terminal velocity
7. When gas temperature increases, its viscosity:

[IOM 2010]

  • Remains constant
  • Increases
  • Decreases
  • First decreases then increases
8. Velocity when two water drops (radius r, velocity v) coalesce:

[IOM 2010]

  • 2^(1/3)v
  • 2^(2/3)v
  • (2^(2/3)-1)v
  • (2^(1/3)-1)v
9. Separation between 10 cm square plates moving at 10 cm/s (η=0.01 poise, F=200 dyne):

[IOM 2009]

  • 5 cm
  • 0.5 cm
  • 0.05 cm
  • 0.005 cm
10. One poise equals:

[KU 2014]

  • 1 N·s/m²
  • 10 N·s/m²
  • 0.1 N·s/m²
  • 0.01 N·s/m²
11. Bernoulli's theorem is based on conservation of:

[KU 2013]

  • Mass
  • Momentum
  • Energy
  • Pressure
12. Terminal velocity when two drops (velocity v) coalesce:

[IE 2009]

  • 2v
  • 2^(1/2)v
  • 2^(2/3)v
  • 4v
13. Velocity profile in wide river:

[MOE 2009]

  • Increases with depth
  • Same everywhere
  • Decreases with depth
  • Zero
14. One poise equals:

[BPKIHS 05]

  • 10⁻¹ N·s/m²
  • 10⁻² N·s/m²
  • 10 N·s/m²
  • 10⁻³ N·s/m²
15. Height difference in rotating liquid (r=0.05m, ω=2 rev/s=4π rad/s):
  • 0.04 m
  • 0.02 m
  • 0.004 m
  • 0.002 m
16. Momentum ratio for hailstones (radius 1:2) at terminal velocity:
  • 1:16
  • 1:32
  • 1:8
  • 1:4
17. Flow rate when tube radius doubles (laminar flow):
  • 4 times
  • 16 times
  • 2 times
  • 8 times
18. Viscosity ratio (η₁/η₂) for equal mass flow (d₁/d₂, t₁/t₂):
  • d₁t₁/d₂t₂
  • d₂t₁/d₁t₂
  • d₁t₂/d₂t₁
  • d₂t₂/d₁t₁
19. Water velocity when manometer pressure drops from 4×10⁴ to 3×10⁴ N/m²:
  • 1.41 m/s
  • 20 m/s
  • 0.20 m/s
  • 2 m/s
20. Time ratio (t₁/t₂) for emptying 1/4 vs. 3/4 of tank:
  • 1/√3
  • √3
  • 2-√3
  • 1/(2-√3)
21. Work to pump 4m³ water to 20m height against 2×10⁵ N/m² pressure:
  • 8×10⁵ J
  • 10×10⁵ J
  • 12×10⁵ J
  • 32×10⁵ J
22. Terminal velocity when 8 drops coalesce:

[BP 2015]

  • 8v
  • 4v
  • 2v
  • 16v
23. Velocity at 10cm diameter section when 20cm section has 5cm/s flow:
  • 1.25 cm/s
  • 2.5 cm/s
  • 10 cm/s
  • 20 cm/s
24. Maximum liquid height with 70 cm³/s inflow and 1 cm² outflow hole:
  • 5 cm
  • 2.5 cm
  • 2 cm
  • 0.25 cm
25. Viscous force when volume increases from V to 8V at same velocity:
  • 8F
  • 4F
  • 16F
  • 2F
26. Terminal velocity when mass increases from m to 8m:
  • 8v
  • 2v
  • 4v
  • v
27. Steel ball upward speed when pulled with 2× effective weight:
  • 10 cm/s
  • 20 cm/s
  • 5 cm/s
  • 0
28. Viscous force when drop radius increases from r to 2r:
  • 2F
  • 4F
  • 8F
  • F
29. Efflux velocity at 3 atm pressure (1 atm=10⁵ Pa, ρ=1000 kg/m³):
  • 20 m/s
  • 10√2 m/s
  • 10√6 m/s
  • 10√5 m/s
30. Maximum average velocity for Re=1000 in 2cm diameter tube (η=10⁻³ kg/m·s):
  • 0.1 m/s
  • 1 m/s
  • 0.2 m/s
  • 2 m/s
31. Flow rate when tube radius halves (same pressure head):

[KU 2015]

  • 1 unit
  • 2 units
  • 4 units
  • 8 units
32. Pressure difference between pipes (L:2L, R:2R):

[IOM 2016]

  • 1/8
  • 1/16
  • 1/32
  • 1/4
33. Bernoulli's equation is applicable in:

[IOM 2017]

  • Magnetic field
  • Electric field
  • Fluid mechanics
  • Sound waves