1. Mechanics
  2. 1. Units, Dimensions and Errors
    2. Vectors and Scalars
    3. Motion in a Straight Line
    4. Projectile Motion
    5. Newton's Laws of Motion
    6. Friction
    7. Work, Energy, Power and Collision
    8. Circular motion
    9. Rotational motion
    10. Simple Harmonic Motion
    11. Gravitation
    12. Elasticity
    13. Surface Tension
    14. Fluid dynamics and Viscosity
    15. Hydrostatics
  3. Heat and Thermodynamics
  4. 16. Thermometry
    17. Thermal expansion
    18. Calorimetry, Change of State and Hygrometry
    19. Gas Laws and Kinetic theory of Gases
    20. Transmission of Heat
    21. Thermodynamics
  5. Sound and Waves
  6. 22. Wave
    23. Superposition of Waves
    24. Stationary/ Standing waves
    25. Doppler's effect and Musical sound
  7. Optics
  8. 26. Reflection of Plane and Curved Mirrors
    27. Refraction at Plane surfaces and Total internal reflection
    28. Refraction through prism and Dispersion of Light
    29. Refraction through Lenses
    30. Chromatic abberation in Lenses, Optical instruments and Human eye
    31. Velocity of Light
    32. Photometry
    33. Wave nature of Light
  9. Electrostatics
  10. 34. Charge and Force
    35. Electric Field and Potential
    36. Capacitance
  11. Electrodynamics
  12. 37. Electric current
    38. Heating Effect of Current
    39. Thermoelectricity
    40. Chemical effect of Current
    41. Meters
  13. Electromagnetism
  14. 42. Properties of Magnets
    43. Magnetic effects of Current
    44. Electromagnetic induction
    45. Alternating current
  15. Modern Physics
  16. 46. Cathode rays, Positive rays and Electrons
    47. Photoelectric effect
    48. X-rays
    49. Atomic structure and Spectrum
    50. Radioactivity
    51. Nuclear physics
    52. Semiconductor and Semiconductor devices
    53. Diode and Triode valves
    54. Logic gates
    55. Relativity and Universe
    56. Particle physics
Mechanics
13. Surface Tension
1. A soap bubble (surface tension = 30×10⁻³ N/m) has radius 2 cm. The work done in doubling the radius is:

[BP 2014]

  • 0
  • 1.1335×10⁻⁴ J
  • 2.261×10⁻⁴ J
  • 9.34×10⁻⁴ J
2. Two capillary tubes made of same material but different radius were dipped into water:
  • Liquid rises more in larger radius capillary tube
  • Liquid rises more in smaller radius capillary tube
  • Liquid rises equal in both
  • No effect
3. The surface energy of a soap bubble is proportional to its radius as:

[BP 2011]

  • R
  • R^(1/2)
4. Oil kept in frying pan spreads more easily when hot due to:
  • Decrease in viscosity
  • Decrease in surface tension
  • Increase in viscosity
  • Increase in angle of contact
5. When two drops combine to form a big drop, ratio of surface energies (2 drops:big drop) is:

[BP 2010]

  • 2^(1/3):1
  • 2^(2/3):1
  • 1:1
  • 2:1
6. Excess pressure inside 1 cm diameter soap bubble (T=25×10⁻³ N/m) is:

[MOE 2014]

  • 25 N/m²
  • 20 N/m²
  • 10 N/m²
  • 5 N/m²
7. When liquid is cooled, its surface tension:

[MOE 2012]

  • Increases
  • Decreases
  • Remains same
  • Decreases then increases
8. With rise in temperature, surface tension:

[IOM 2013, KU 2010]

  • Increases
  • Decreases
  • Remains same
  • Becomes zero
9. Water rises 3 cm in vertical capillary. If inclined at 30°, rise will be:

[IOM 2011]

  • 6 cm
  • 3 cm
  • 1.5 cm
  • 0.5 cm
10. Waterproofing agent changes angle of contact:

[IOM 2011]

  • From obtuse to acute
  • From acute to obtuse
  • From obtuse to π/2
  • From acute to π/2
11. Two unequal soap bubbles connected:

[KU 2014]

  • Smaller collapses, larger grows
  • Larger collapses, smaller grows
  • Both increase
  • Both decrease
12. Work to expand soap film from 10×6 cm to 10×11 cm (T=3×10⁻² N/m):

[IE 2011]

  • 1.5×10⁻³ J
  • 3×10⁻³ J
  • 6×10⁻³ J
  • 11×10⁻³ J
13. Reason for water droplet being spherical:

[BP 2013]

  • Viscosity
  • Surface tension
  • Terminal velocity
  • Pressure
14. Capillary tube (5 cm long, 0.1 mm radius) in water (T=25 dyne/cm):

[Bangladesh 09]

  • Rises 2 cm
  • Rises 4 cm
  • Fills but doesn't overflow
  • Fills and overflows
15. Water rise in 0.044 mm diameter capillary (T=73 dyne/cm):

[IOM 08]

  • 6.7 cm
  • 7.3 cm
  • 5.6 cm
  • 4.3 cm
16. Two radius r bubbles coalesce into one bubble of radius R:

[MOE 2062]

  • R = 1.6r
  • R = 1.8r
  • R = 1.4r
  • R = 1.2r
17. Capillary rise when cross-section reduced to 1/4th original:

[MOE 2010]

  • 3 cm
  • 6 cm
  • 15 cm
  • 12 cm
18. Tension in string when stone falls freely:

[IE-01]

  • Greater than weight
  • 0
  • Smaller than weight but not 0
  • None
19. Work to blow soap bubble of radius r (surface tension T):

[IE-04]

  • 2πr²T
  • 4πr²T
  • 8πr²T
  • 16πr²T
20. Capillary rise at 60° inclination vs. vertical 2 cm rise:

[BPKIHS-07]

  • 1 cm
  • 2 cm
  • 4/3 cm
  • 4 cm
21. Detergents remove grease by:

[BPKIHS 05]

  • Decreasing liquid density
  • Increasing temperature
  • Decreasing contact angle
  • Increasing surface tension
22. Work to double soap bubble radius R:

[BPKIHS-06]

  • 8πR²T
  • 32πR²T
  • 24πR²T
  • 16πR²T
23. Contact angle when liquid doesn't wet surface:

[MOE/BPKIHS-97]

  • Acute
  • 90°
  • Obtuse
  • Zero
24. Depth for 0.4mm air bubble equilibrium (T=72×10⁻³ N/m):
  • 7.348 cm
  • 0.981 cm
  • 1.837 cm
  • 3.674 cm
25. Length of water column in vertical 2mm radius capillary (T=73.5×10⁻³ N/m):
  • 0.75 cm
  • 3 cm
  • 4.5 cm
  • 6 cm
26. Work to expand soap film from 10×6 cm to 10×10 cm (T=0.030 N/m):
  • 2.4×10⁻⁴ J
  • 2.4×10⁻³ J
  • 1.2×10⁻² J
  • 1.2×10⁻¹ J
27. Radius of common interface when 3mm and 4mm soap bubbles coalesce:
  • 5 mm
  • 3.5 mm
  • 12 mm
  • 7 mm
28. Ratio of liquid heights in capillaries (SG ratio 0.4:0.8, T ratio 6:5):
  • 12:5
  • 5:12
  • 1:2
  • 2:1
29. Work to double radius of 2cm soap bubble (T=3.0×10⁻² N/m):
  • Zero
  • 9.34×10⁻⁴ J
  • 2.26×10⁻⁴ J
  • 4.04×10⁻⁴ J
30. Volume ratio of bubbles with internal pressures 1.01:1.02 atm:
  • 102:101
  • (102)³:(101)³
  • 8:1
  • 2:1
31. Force to pull 5cm radius plate from water (T=75×10⁻³ N/m):
  • 30π×10⁻³ N
  • 60π×10⁻³ N
  • 15π×10⁻³ N
  • 75π×10⁻³ N
32. Excess pressure inside soap bubble of radius r:
  • 4T/r
  • 2T/r
  • T/r
  • T/2r
33. Work to blow bubble of volume 2V vs. volume V:

[KU 2015]

  • W
  • √2 W
  • 2^(1/3) W
  • 2^(2/3) W
34. Ratio of final to initial surface energy when 1000 drops combine:
  • 10:1
  • 1:10
  • 1000:1
  • 1:1000
35. Work to increase bubble radius from R to 3R (initial work W):
  • 2W
  • 4W
  • 8W
  • 16W
36. Work to break 1 cm mercury drop into 10⁶ droplets (T=35×10⁻³ N/m):
  • 4.35×10⁻³ J
  • 4.35×10⁻² J
  • 4.35×10⁻¹ J
  • 4.35×10⁻⁴ J
37. Mass of water in capillary when radius changes from r to 2r:
  • m
  • 2m
  • m/2
  • 4m
38. Excess pressure ratio for bubbles with radii 2:1:
  • 1:4
  • 1:2
  • 2:1
  • 4:1
39. Length of liquid column when 3 cm vertical capillary tilted 60°:
  • 3 cm
  • 2/3 cm
  • 1.5 cm
  • 6 cm
40. Work to expand soap bubble diameter from D to 3D (T=surface tension):
  • 4πD²T
  • 8πD²T
  • 16πD²T
  • 32πD²T
41. Apparent contact angle when capillary tip is 1 cm above liquid (original rise 2 cm):
  • 30°
  • 45°
  • 60°
  • 90°
42. Radius of capillary supporting 6.28×10⁻⁴ N liquid weight (T=5×10⁻² N/m):
  • 2.5×10⁻³ m
  • 8×10⁻⁴ m
  • 2×10⁻³ m
  • 2×10⁻⁴ m
43. Capillary rise is maximum when water temperature is:
  • 4°C
  • Minimum at 4°C
  • Minimum at 0°C
  • Same at all temperatures
44. Capillary rise in satellite compared to 0.1 m on Earth:
  • 0.1 m
  • 0.2 m
  • 0.98 m
  • Full length of tube
45. Surface tension force on disc with hole (outer R, inner r):
  • 2π(R-r)T
  • 2π(R+r)T
  • 4π(R+r)T
  • π(R²-r²)T
46. Height of water column in 1 mm radius vertical capillary (T=73.5×10⁻³ N/m):
  • 2.94 cm
  • 3 mm
  • 3 cm
  • 1.5 cm
47. Force to pull 5 cm radius plate from water (T=75 dyne/cm):

[KU 2015]

  • 375 dyne
  • 375π dyne
  • 750 dyne
  • 750π dyne
48. Liquid height when vessel length halved (original height h' < h):

[KU 2017]

  • h'
  • h'/2
  • 2h'
  • (h+h')/2