1. Mechanics
  2. 1. Units, Dimensions and Errors
    2. Vectors and Scalars
    3. Motion in a Straight Line
    4. Projectile Motion
    5. Newton's Laws of Motion
    6. Friction
    7. Work, Energy, Power and Collision
    8. Circular motion
    9. Rotational motion
    10. Simple Harmonic Motion
    11. Gravitation
    12. Elasticity
    13. Surface Tension
    14. Fluid dynamics and Viscosity
    15. Hydrostatics
  3. Heat and Thermodynamics
  4. 16. Thermometry
    17. Thermal expansion
    18. Calorimetry, Change of State and Hygrometry
    19. Gas Laws and Kinetic theory of Gases
    20. Transmission of Heat
    21. Thermodynamics
  5. Sound and Waves
  6. 22. Wave
    23. Superposition of Waves
    24. Stationary/ Standing waves
    25. Doppler's effect and Musical sound
  7. Optics
  8. 26. Reflection of Plane and Curved Mirrors
    27. Refraction at Plane surfaces and Total internal reflection
    28. Refraction through prism and Dispersion of Light
    29. Refraction through Lenses
    30. Chromatic abberation in Lenses, Optical instruments and Human eye
    31. Velocity of Light
    32. Photometry
    33. Wave nature of Light
  9. Electrostatics
  10. 34. Charge and Force
    35. Electric Field and Potential
    36. Capacitance
  11. Electrodynamics
  12. 37. Electric current
    38. Heating Effect of Current
    39. Thermoelectricity
    40. Chemical effect of Current
    41. Meters
  13. Electromagnetism
  14. 42. Properties of Magnets
    43. Magnetic effects of Current
    44. Electromagnetic induction
    45. Alternating current
  15. Modern Physics
  16. 46. Cathode rays, Positive rays and Electrons
    47. Photoelectric effect
    48. X-rays
    49. Atomic structure and Spectrum
    50. Radioactivity
    51. Nuclear physics
    52. Semiconductor and Semiconductor devices
    53. Diode and Triode valves
    54. Logic gates
    55. Relativity and Universe
    56. Particle physics
Mechanics
12. Elasticity
1. Which of the following unit of Young's modulus is in MKS system:

[IOM 2011]

  • N/m
  • m/N
  • N×m
  • N×m²
2. The elasticity of highly elastic body is:

[IOM 2009]

  • 0
  • 0.5
  • 1
3. Breaking stress (in N/m²) of a wire of radius 3 mm is F. The breaking stress of the same material of radius 6 mm will be:

[MOE 2013, 2012]

  • F/4
  • F/2
  • F
  • 2F
4. The stress-strain graph for copper and rubber shows slopes tanθ₁ (rubber) and tanθ₂ (copper). Then:

[MOE 2010]

  • tanθ₁ < tanθ₂
  • tanθ₁ ≥ tanθ₂
  • tanθ₁ = tanθ₂
  • tanθ₁ > tanθ₂
5. The energy density of a wire of strain S and Young's modulus Y is:

[MOE 2014]

  • SY
  • SY²/2
  • 2SY
  • S²Y/2
6. When length and load are doubled for a wire, the ratio of stress to strain:

[KU 2014, 2011]

  • Doubles
  • Remains unchanged
  • Becomes 4×
  • Becomes 16×
7. Which statement is correct about elasticity?

[KU 2014]

  • Stress ∝ strain (elastic limit)
  • Plasticity: strain occurs up to a limit
  • Elasticity only in solids
  • Perfectly plastic body has ∞ elasticity
8. Modulus of rigidity is:

[KU 2013]

  • Bulk stress/bulk strain
  • Shear stress/shear strain
  • Shear stress/bulk strain
  • Normal stress × normal strain
9. Energy stored per unit volume under pressure P (Young's modulus Y):

[IE 2013]

  • P/2Y
  • P²/2Y
  • 2P/Y
  • PY/2
10. For Poisson's ratio 0.20 and longitudinal strain 2×10⁻³, % volume change is:

[IE 2013]

  • +0.12%
  • -0.12%
  • +0.28%
  • -0.28%
11. Energy stored per unit volume (stress S, Young's modulus Y):

[BP 2010]

  • S/Y
  • S²/2Y
  • 2S/Y
  • SY/2
12. Breaking strength of nylon rope (1.5cm dia) if 3cm rope breaks at 1.5×10⁵ N:

[BP 2009]

  • 0.75×10⁵ N
  • 0.375×10⁵ N
  • 1.5×10⁵ N
  • 6×10⁵ N
13. Energy stored in spring B (K_A=2K_B) when spring A stores E:

[BP 2012]

  • E/2
  • 2E
  • 4E
  • E/4
14. Young's modulus for wire (300cm, 0.003cm², ΔL=0.5cm, F=10⁷ dyne):

[KU 2012]

  • 4×10¹¹ dyne/cm²
  • 4×10¹¹ N/m²
  • 2×10¹¹ dyne/cm²
  • 10¹² dyne/cm²
15. Force to double length of material (Y=2×10¹⁰ N/m², A=100 m²):

[KU 2010]

  • 4×10¹² N
  • 2×10¹² N
  • 2×10¹⁰ N
  • 10¹⁸ N
16. Steel vs. rubber elasticity means for same stress:

[Bangladesh 2009]

  • More strain in steel
  • Less strain in steel
  • Equal strain
  • Variable strain
17. Stress required to double wire length:

[IOM 1996]

  • Equal to Y
  • 2Y
  • Y/2
18. Energy stored per unit volume (Y=2×10¹¹ N/m², strain=0.05):

[MOE 2065]

  • 2.5×10⁸ J/m³
  • 5×10⁸ J/m³
  • 3.5×10⁸ J/m³
  • 4×10⁸ J/m³
19. Extension of steel wire (L=2.5m, A=0.8×10⁻⁶ m², Y=2×10¹¹ Pa, F=8N):

[MOE 2062]

  • 0.125 mm
  • 0.250 mm
  • 0.500 mm
  • 0.750 mm
20. Elastic energy per unit volume (stress S, Y):

[MOE 2010]

  • YS²/2
  • S²/(2Y)
  • S²Y/2
  • S/(2Y)
21. Work done stretching wire (L, A, Y) by x:

[IE-08]

  • Yx²A/L
  • Yx²A/2L
  • 2Yx²A/L
  • Yx²/2AL
22. PE when string stretched from 2cm (U) to 10cm:

[IE-08]

  • U/5
  • U/25
  • 25U
  • 5U
23. Change in seawater density (ρ₀, B) at depth h:

[BPKIHS-09]

  • Bρ₀²gh
  • ρ₀gh/B
  • ρ₀²gh/B
  • ρ₀gh/B²
24. Substance with highest elasticity:

[BPKIHS-05]

  • Rubber
  • Glass
  • Steel
  • Copper
25. Length of wire (breaking stress=10⁷ N/m², density=3×10³ kg/m³) breaking under own weight:
  • 30 m
  • 34 m
  • 38 m
  • 42 m
26. Wire elongating most under same load:
  • L=1m, d=1mm
  • L=3m, d=3mm
  • L=2m, d=2mm
  • L=4m, d=0.5mm
27. Angle of shear at surface for twisted wire (30° twist, L=1m, r=4mm):

[BPKIHS]

  • 120°
  • 1.20°
  • 0.12°
  • 0.012°
28. Original spring length if elongation changes from 1cm to 5cm when ω doubled:
  • 16 cm
  • 15 cm
  • 14 cm
  • 13 cm
29. Work done stretching wire by l under weight Mg:
  • ½Mgl
  • Mgl
  • 2Mgl
  • 0
30. Elastic energy per unit volume in water (B, ρ, depth h):
  • B(hρg)
  • (hρg)²/2B
  • ½B(hρg)²
  • (hρg)/B
31. Relation between R_B (brass) and R_S (steel) for same ΔL under same F (Y_steel=2Y_brass):
  • R_S = √2 R_B
  • R_S = R_B/√2
  • R_S = 4R_B
  • R_S = R_B/4
32. Spring constant K for metal wire (L, A, Y):
  • K = YA
  • K = YA/L
  • K = YL/A
  • K = Y/AL
33. Depression at center of loaded beam is proportional to:
  • 1/Y
  • √Y
  • Y
34. % volume change for longitudinal strain 10⁻³ (Poisson's ratio=0.2):
  • 0.02%
  • 0.04%
  • 0.06%
  • 0.6%
35. Depth of lake if bubble radius increases n times (atm pressure = H mmHg):
  • h = (n³-1)H×13.6
  • h = (n³-1)H
  • h = (n-1)H×13.6
  • h = (n-1)H
36. Depth for 0.2% density increase in rubber ball (B=10⁹ N/m², ρ=10³ kg/m³):
  • 100 m
  • 200 m
  • 50 m
  • 500 m
37. Decrease in 1L water volume under 2×10⁷ N/m² (compressibility=5×10⁻¹⁰ m²/N):
  • 5 cc
  • 10 cc
  • 4 cc
  • 1 cc
38. Interatomic force constant for iron (Y=2×10¹¹ N/m², spacing=3×10⁻¹⁰ m):
  • 60 N/m
  • 120 N/m
  • 3 N/m
  • 180 N/m
39. Hooke's Law: ratio of stress to strain when stress increases:
  • Increases
  • Decreases
  • Remains constant
  • None
40. Breaking load for wire divided into two identical parts:
  • 40 kg
  • 80 kg
  • 20 kg
  • None
41. Breaking force for wire radius 2r vs. radius r:
  • F
  • 2F
  • F/2
  • 4F
42. Ratio of twist angles for rods A and B (radii r₁ and r₂) under same torque:
  • r₂⁴/r₁⁴
  • r₁⁴/r₂⁴
  • r₂/r₁
  • r₁/r₂
43. Force developed in bar heated 0°C→100°C while constrained:
  • F ∝ α
  • F ∝ α²
  • F ∝ 1/α
  • F ∝ √α
44. Length of spring when tension is 9N (4N→a, 5N→b):
  • 4a-5b
  • 5b-4a
  • 5b+4a
  • 9(b-a)
45. Stress that changes object shape:

[IOM 2015]

  • Bulk stress
  • Shear stress
  • Tensile stress
  • Longitudinal stress
46. Young's modulus is:

[IOM 2015]

  • Normal stress/lateral strain
  • Normal stress/longitudinal strain
  • Normal stress × longitudinal strain
  • Shear stress/lateral strain
47. Effect of temperature on Young's modulus:

[IOM 2016]

  • Increases
  • Decreases
  • Remains constant
  • First increases then decreases
48. Strain ratio for wires (length ratio 1:2, same radius/material, same force):

[KU 2017]

  • 1:2
  • 2:1
  • 1:1
  • 1:4