1. Permutation and Combination
  2. 1. Introduction (1.1)
    2. Permutation (1.2)
    3. Combination (1.3)
  3. Binomial Theorem, Exponential and Logarithmic Series
  4. 4. Binomial theorem (2.1)
    5. Application of Binomial series (2.2)
    6. Exponential and Logarithmic series (2.3)
  5. Complex Nunber
  6. 7. (3.1)
    8. (3.2)
  7. Sequence and Series
  8. 9. (4.1)
    10. Principle of Mathematical Induction (4.2)
  9. Matrix based System of Linear Equations
  10. 11. (5.1)
    12. (5.2)
    13. (5.3)
    14. (5.4)
  11. Properties of Triangle
  12. 15. (6.1)
  13. Solution of Triangle
  14. 16. (7.1)
  15. Conic Section
  16. 17. Circle (8.1)
    18. Parabola (8.2)
    19. Tangents and Normal of Parabola (8.3)
    20. Ellipse and its Standard Equation (8.4)
    21. Hyperbola (8.5)
  17. Product of Vectors Vectors
  18. 22. (9.1)
    23. (9.2)
  19. Correlation and Regression Analysis
  20. 24. (10.1)
    25. (10.2)
    26. (10.3)
  21. Probability
  22. 27. (11.1)
  23. Derivatives
  24. 28. Limit, Continuity and Derivative
    29. Derivatives of Hyperbolic Functions (12.1)
  25. Applications of Derivatives
  26. 30. (13.1)
    31. (13.2)
    32. (13.3)
    33. (13.4)
  27. Antiderivative
  28. 34. (14.1)
    35. (14.2)
    36. (14.3)
    37. (14.4)
  29. Differential Equations
  30. 38. (15.1)
    39. (15.2)
    40. (15.3)
    41. (15.4)
    42. (15.5)
  31. System of Linear Equations
  32. 43. (16.1)
    44. (16.2)
  33. Linear programming
  34. 45. (17.1)
  35. Statics
  36. 46. (18.1)
  37. Dynamics: Newton's Laws of Motion and Projectile
  38. 47. (19.1)
    48. (19.2)
    49. (19.3)
    50. (19.4)
Permutation and Combination
3. Combination (1.3)

Question Answers

Q.

A boy puts his hand into a bag which contains 10 differently coloured marbles and brings out 3. How many different results are possible?

Total number of differently coloured marbles = 10
Number of marbles drawn = 3
Number of different results possible = \(^{10}C_3\) = \(\frac{10!}{3!7!}\) = 120

Q.

Find the number of ways in which a student can select 5 courses out of 8 courses. If 3 courses are compusory, in how many ways can the selections be made?

Total number of courses = 8
Number of courses to be selected = 5
Number of ways in which a student can select 5 courses out of 8 courses = \(^{8}C_5\) = \(\frac{8!}{5!3!}\) = 56
Number of compulsory courses = 3
Number of remaining courses to be selected = 2
Number of ways in which the selections can be made = \(^{5}C_2\) = \(\frac{5!}{2!3!}\) = 10

Q.

From 10 persons, in how many ways can a selection of 4 be made

  1. when one particular person is always included?
  2. when two particular persons are always excluded?

Total number of persons = 10
Number of persons to be selected = 4

  1. Number of ways in which a selection of 4 can be made when one particular person is always included = \(^{9}C_3\) = \(\frac{9!}{3!6!}\) = 84
  2. Number of ways in which a selection of 4 can be made when two particular persons are always excluded = \(^{8}C_4\) = \(\frac{8!}{4!4!}\) = 70
     

Q.

A bag contains 8 white balls and 5 blue balls. In how many ways can 5 white balls and 3 blue balls be drawn?

Number of white balls = 8
Number of blue balls = 5
Number of white balls to be drawn = 5
Number of blue balls to be drawn = 3
Number of ways in which 5 white balls and 3 blue balls can be drawn = \(^{8}C_5 \times ^{5}C_3\) = \(\frac{8!}{5!3!} \times \frac{5!}{3!2!} = 56 \times 10 = 560\)
 

Q.

How many committees can be formed from a set of 7 boys and 5 girls if each committee contains 4 boys and 3 girls?

For boys committee:
Number of boys = 7
Number of boys to be selected = 4
Number of boys committees = \(^{7}C_4\) = \(\frac{7!}{4!3!}\) = 35

For girls committee:
Number of girls = 5
Number of girls to be selected = 3
Number of girls committees = \(^{5}C_3\) = \(\frac{5!}{3!2!}\) = 10

Total number of committees = \(35 \times 10 = 350 \)

Q.

From a group of 11 men and 8 women, how many committees consisting of 3 men and 2 womens are possible?

For men's committee:
Total number of men = 11
Number of men to be selected = 3
Number of ways to select 3 men from 11 = \(^{11}C_3\) = \(\frac{11!}{3!8!}\) = 165

For women's committee:
Total number of women = 8
Number of women to be selected = 2
Number of ways to select 2 women from 8 = \(^{8}C_2\) = \(\frac{8!}{2!6!}\) = 28

Total number of committees = \(165 \times 28 = 4620\)

Q.

From 4 mathematicians, 6 stratisticians and 5 economists, how many committees of 6 members can be formed so as to include 2 members from each category?

For mathematicians:
Total number of mathematicians = 4
Number of mathematicians to be selected = 2
Number of ways to select 2 mathematicians from 4 = \(^{4}C_2\) = \(\frac{4!}{2!2!}\) = 6

For statisticians:
Total number of statisticians = 6
Number of statisticians to be selected = 2
Number of ways to select 2 statisticians from 6 = \(^{6}C_2\) = \(\frac{6!}{2!4!}\) = 15

For economists:
Total number of economists = 5
Number of economists to be selected = 2
Number of ways to select 2 economists from 5 = \(^{5}C_2\) = \(\frac{5!}{2!3!}\) = 10

Total number of committees = \(6 \times 15 \times 10 = 900\)
\end{solution}
 

Q.

A person has got 12 acquaintances of whom 8 are relatives. In how many ways can he invite 7 guests so that 5 of them may be relatives?

Total number of acquaintances = 12
Number of relatives = 8
Number of non-relatives = 4
Number of guests to be invited = 7
Number of relatives to be invited = 5
Number of non-relatives to be invited = 2

Number of ways to select 5 relatives from 8 = \(^{8}C_5\) = \(\frac{8!}{5!3!}\) = 56
Number of ways to select 2 non-relatives from 4 = \(^{4}C_2\) = \(\frac{4!}{2!2!}\) = 6

Total number of ways to invite 7 guests so that 5 of them are relatives = \(56 \times 6 = 336\)
 

Q.

There are ten electric bulbs in the stock of a shop out of which there are three defectives. In how many ways can a selection of 6 bulbs be made so that 4 of them may be good bulbs?

Total number of bulbs = 10
Number of bulbs to be selected = 6

For non-defective bulbs: 
Number of non-defective bulbs = 7
Number of good bulbs to be selected = 4
Number of ways to select 4 good bulbs from 7 = \(^{7}C_4\) = \(\frac{7!}{4!3!}\) = 35

For defective bulbs: 
Number of defective bulbs = 3
Number of defective bulbs to be selected = 2
Number of ways to select 2 defective bulbs from 3 = \(^{3}C_2\) = \(\frac{3!}{2!1!}\) = 3

Total number of ways to select 6 bulbs so that 4 of them are good = \(35 \times 3 = 105\)
 

Q.

From 6 gentleman and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done so as to include at least one lady?

Total number of gentlemen = 6
Total number of ladies = 4
Number of members to be selected = 5

Number of ways to select 1 lady and 4 gentlemen = \(^{4}C_1 \times ^{6}C_4\) = \(\frac{4!}{1!3!} \times \frac{6!}{4!2!}\) = 60
Number of ways to select 2 ladies and 3 gentlemen = \(^{4}C_2 \times ^{6}C_3\) = \(\frac{4!}{2!2!} \times \frac{6!}{3!3!}\) = 120
Number of ways to select 3 ladies and 2 gentlemen = \(^{4}C_3 \times ^{6}C_2\) = \(\frac{4!}{3!1!} \times \frac{6!}{2!4!}\) = 60
Number of ways to select 4 ladies and 1 gentleman = \(^{4}C_4 \times ^{6}C_1\) = \(\frac{4!}{4!0!} \times \frac{6!}{1!5!}\) = 6

Total number of ways to form a committee of 5 members so as to include at least one lady = \(60 + 120 + 60 + 6 = 246\) ways
 

Q.

A candidate is required to answer 6 out of 10 questions which are divided into 2 groups each containing 5 questions and he is not permitted to attempt more than 4 from any group. In how many different ways can he make up his choice?

Given:
Total number of questions = 10
Number of questions in each group = 5
Number of questions to be answered = 6
Maximum questions from each group = 4

We need to find the number of ways to select 6 questions such that no more than 4 are from any group.

Case 1: Selecting 2 questions from group A and 4 questions from group B
\[
\text{Number of ways to select 2 questions from group A} = ^{5}C_2 = \frac{5!}{2!3!} = 10
\]
\[
\text{Number of ways to select 4 questions from group B} = ^{5}C_4 = \frac{5!}{4!1!} = 5
\]
\[
\text{Total number of ways for this case} = 10 \times 5 = 50
\]

Case 2: Selecting 3 questions from group A and 3 questions from group B
\[
\text{Number of ways to select 3 questions from group A} = ^{5}C_3 = \frac{5!}{3!2!} = 10
\]
\[
\text{Number of ways to select 3 questions from group B} = ^{5}C_3 = \frac{5!}{3!2!} = 10
\]
\[
\text{Total number of ways for this case} = 10 \times 10 = 100
\]

Case 3: Selecting 4 questions from group A and 2 questions from group B
\[
\text{Number of ways to select 4 questions from group A} = ^{5}C_4 = \frac{5!}{4!1!} = 5
\]
\[
\text{Number of ways to select 2 questions from group B} = ^{5}C_2 = \frac{5!}{2!3!} = 10
\]
\[
\text{Total number of ways for this case} = 5 \times 10 = 50
\]

Summing all the cases:
\[
\text{Total number of ways to select 6 questions} = 50 + 100 + 50 = 200
\]
 

Q.

A man has 5 friends. In how many ways can he invite one or more of them to a dinner?

Given:
Number of friends = 5
Number of friends to be invited = 1 or more

Number of ways to invite 1 friend = \(^{5}C_1\) = \(\frac{5!}{1!4!}\) = 5
Number of ways to invite 2 friends = \(^{5}C_2\) = \(\frac{5!}{2!3!}\) = 10
Number of ways to invite 3 friends = \(^{5}C_3\) = \(\frac{5!}{3!2!}\) = 10
Number of ways to invite 4 friends = \(^{5}C_4\) = \(\frac{5!}{4!1!}\) = 5
Number of ways to invite 5 friends = \(^{5}C_5\) = \(\frac{5!}{5!0!}\) = 1

Total number of ways to invite one or more friends = 5 + 10 + 10 + 5 + 1 = 31
 

Q.

  1. If \(C(20, r+5) = C(20, 2r-7)\), find \(C(15, r)\).
  2. If \(C(n, 10) + C(n, 9) = C(20, 10)\), find n and \(C(n, 17)\).
  3. Solve for n the equation \(C(n+2, 4) = 6 C(n, 2)\).
  4. If \(P(n,r) = 336 \) and \(C(n, r) = 56\), find n and r.
  5. If \(nC_(r+1) = 45, nC_r = 120 \) and \(nC_(r+1) = 210 \), find n and r.

  1. Since the combinations are equal, we can equate their r components:
                 \begin{align}
                     r + 5 & = 2r - 7 \\
                     5 + 7 & = 2r - r \\
                     r     & = 12
                 \end{align}
    Now, we need to find \(C(15, r)\):
                 \begin{align}
                     C(15, 12) & = C(15, 3)                                           \\
                               & = \frac{15!}{3!(15-3)!}                              \\
                               & = \frac{15!}{3!12!}                                  \\
                               & = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \\
                               & = 455
                 \end{align}
                 So, \(C(15, 12) = 455\).
  2. Given:
                 \begin{align}
                     C(n, 10) + C(n, 9)                                            & = C(20, 10)               \\
                     \frac{n!}{10!(n-10)!} + \frac{n!}{9!(n-9)!}                   & = \frac{20!}{10!(20-10)!} \\
                     \frac{n!}{10!(n-10)!} + \frac{n!}{9!(n-9)!}                   & = \frac{20!}{10!10!}      \\
                     \frac{n!}{10!(n-10)!} + \frac{n! \cdot 10}{10 \cdot 9!(n-9)!} & = \frac{20!}{10!10!}      \\
                     \frac{n!}{10!(n-10)!} + \frac{10 \cdot n!}{10!(n-9)!}         & = \frac{20!}{10!10!}      \\
                     \frac{n!}{(n-10)!} + \frac{10 \cdot n!}{(n-9)!}               & = \frac{20!}{10!}         \\
                     \frac{n!(n-9)}{(n-10)!(n-9)} + \frac{10 \cdot n!}{(n-9)!}     & = \frac{20!}{10!}         \\
                     \frac{n!(n-9)}{(n-9)!} + \frac{10 \cdot n!}{(n-9)!}           & = \frac{20!}{10!}         \\
                     \frac{n!}{(n-9)!}(n-9+10)                                     & = \frac{20!}{10!}         \\
                     \frac{n!}{(n-9)!}(n+1)                                        & = \frac{20!}{10!}         \\
                     \frac{(n+1)!}{(n-9)!}                                         & = \frac{20!}{10!}         \\
                 \end{align}

             Solving for \(n\):
             \begin{align}
                 (n+1)! & = 20! \\
                 n+1    & = 20  \\
                 n      & = 19
             \end{align}
             Now, we need to find \(C(n, 17)\):
             \begin{align}
                 C(19, 17) & = C(19, 2)                        \\
                           & = \frac{19!}{2!(19-2)!}           \\
                           & = \frac{19!}{2!17!}               \\
                           & = \frac{19 \times 18}{2 \times 1} \\
                           & = 171
             \end{align}
             So, \(C(19, 17) = 171\).

c.                 \begin{align}
                 C(n+2, 4)                 & = 6 C(n, 2)             \\
                 \frac{(n+2)!}{4!(n+2-4)!} & = 6 \frac{n!}{2!(n-2)!} \\
                 \frac{(n+2)!}{4!(n-2)!}   & = 3 \frac{n!}{(n-2)!}   \\
                 \frac{(n+2)!}{4!}         & = 3 \cdot n!            \\
                 \frac{(n+2)(n+1)n!}{24}   & = 3n!                   \\
                 \frac{(n+2)(n+1)}{24}     & = 3                     \\
                 (n+2)(n+1)                & = 72                    \\
                 n^2 + 3n + 2              & = 72                    \\
                 n^2 + 3n - 70             & = 0
             \end{align}
             Using the quadratic formula \(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\):   \[
                 n = \frac{-3 \pm \sqrt{9 + 280}}{2} = \frac{-3 \pm 17}{2}
             \]
             So, \(n = 7\) or \(n = -10\). Since \(n\) must be non-negative, \(n = 7\).

d.   Given:
             \[
                 P(n, r)  = 336  \text{ and }  C(n, r) = 56
             \]

             We know that:
             \begin{align}
                 P(n, r) & = r! \cdot C(n, r)   \\
                 336     & = r! \cdot 56        \\
                 r!      & = \frac{336}{56} = 6 \\
                 r       & = 3
             \end{align}

             Now, we need to find \(n\) using \(P(n, r) = 336\):
             \begin{align}
                 P(n, 3)           & = \frac{n!}{3!(n-3)!} = 336                                    \\
                 \frac{n!}{(n-3)!} & = 336                                                          \\
                 \frac{8!}{(8-3)!} & = \frac{40320}{120} = 336 \quad \text{(Trying with \(n = 8\))}
             \end{align}
             So, \(n = 8\) and \(r = 3\).

 

e.   Given:
             \[
                 C(n, r-1) = \frac{n!}{(r-1)!(n-r+1)!} = 45 \tag{1}
             \]
             \[
                 C(n, r) = \frac{n!}{r!(n-r)!} = 120 \tag{2}
             \]
             \[
                 C(n, r+1) = \frac{n!}{(r+1)!(n-r-1)!} = 210 \tag{3}
             \]

             Dividing equation (2) by equation (1):
             \begin{align}
                 \frac{C(n, r)}{C(n, r-1)}                             & = \frac{120}{45}               \\
                 \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r-1)!(n-r+1)!}} & = \frac{120}{45}               \\
                 \frac{(n-r+1)}{r}                                     & = \frac{120}{45} = \frac{8}{3} \\
                 3(n-r+1)                                              & = 8r                           \\
                 3n - 3r + 3                                           & = 8r                           \\
                 3n + 3                                                & = 11r                          \\
                 r                                                     & = \frac{3n + 3}{11}
             \end{align}

             Dividing equation (3) by equation (2):
             \begin{align}
                 \frac{C(n, r+1)}{C(n, r)}                             & = \frac{210}{120}               \\
                 \frac{\frac{n!}{(r+1)!(n-r-1)!}}{\frac{n!}{r!(n-r)!}} & = \frac{210}{120}               \\
                 \frac{(n-r)}{(r+1)}                                   & = \frac{210}{120} = \frac{7}{4} \\
                 4(n-r)                                                & = 7(r+1)                        \\
                 4n - 4r                                               & = 7r + 7                        \\
                 4n                                                    & = 11r + 7                       \\
                 r                                                     & = \frac{4n - 7}{11}
             \end{align}

             Equating the two expressions for \(r\):
             \begin{align}
                 \frac{3n + 3}{11} & = \frac{4n - 7}{11} \\
                 3n + 3            & = 4n - 7            \\
                 n                 & = 10
             \end{align}

             Substituting \(n = 10\) back into one of the equations for \(r\):
             \[
                 r = \frac{3(10) + 3}{11} = \frac{30 + 3}{11} = 3
             \]
             So, \(n = 10\) and \(r = 3\).

Q.

An examination paper consisting of 10 questions, is divided into two groups A and B. Group A contains 6 questions. In how many ways can an examinee attempt 7 questions.

  1. selecting 4 from group A and 3 from group B?
  2. selecting atleast two questions from each group?

    (i) Selecting 4 from group A and 3 from group B:
   Number of ways to select 4 questions from group A = \(^{6}C_4 = \frac{6!}{4!2!} = 15\)
   Number of ways to select 3 questions from group B = \(^{4}C_3 = \frac{4!}{3!1!} = 4\)
   Total number of ways for this case = \(15 \times 4 = 60\)

   (ii) Selecting at least two questions from each group:
   Case 1: Selecting 2 questions from group A and 5 questions from group B
   Number of ways to select 2 questions from group A = \(^{6}C_2 = \frac{6!}{2!4!} = 15\)
   Number of ways to select 5 questions from group B = \(^{4}C_5 = 0\) (not possible)
   Total number of ways for this case = 0

   Case 2: Selecting 3 questions from group A and 4 questions from group B
   Number of ways to select 3 questions from group A = \(^{6}C_3 = \frac{6!}{3!3!} = 20\)
   Number of ways to select 4 questions from group B = \(^{4}C_4 = 1\)
   Total number of ways for this case = \(20 \times 1 = 20\)

   Case 3: Selecting 4 questions from group A and 3 questions from group B
   Number of ways to select 4 questions from group A = \(^{6}C_4 = \frac{6!}{4!2!} = 15\)
   Number of ways to select 3 questions from group B = \(^{4}C_3 = \frac{4!}{3!1!} = 4\)
   Total number of ways for this case = \(15 \times 4 = 60\)

   Case 4: Selecting 5 questions from group A and 2 questions from group B
   Number of ways to select 5 questions from group A = \(^{6}C_5 = \frac{6!}{5!1!} = 6\)
   Number of ways to select 2 questions from group B = \(^{4}C_2 = \frac{4!}{2!2!} = 6\)
   Total number of ways for this case = \(6 \times 6 = 36\)

   Summing all the cases:
   Total number of ways to select 7 questions = \(0 + 20 + 60 + 36 = 116\)

Q.

Six men in a group of 8 are skilled. Find the number of ways by which 5 men can be slected such that:

  1. atleast 3 of them may be the skilled man.
  2. atleast one of them may be the unskilled man.

  (i) At least 3 of them may be skilled men:
   Case 1: Selecting 3 skilled men and 2 unskilled men:
   Number of ways to select 3 skilled men from 6 = \(^{6}C_3 = \frac{6!}{3!3!} = 20\)
   Number of ways to select 2 unskilled men from 2 = \(^{2}C_2 = \frac{2!}{2!0!} = 1\)
   Total number of ways for this case = \(20 \times 1 = 20\)

   Case 2: Selecting 4 skilled men and 1 unskilled man:
   Number of ways to select 4 skilled men from 6 = \(^{6}C_4 = \frac{6!}{4!2!} = 15\)
   Number of ways to select 1 unskilled man from 2 = \(^{2}C_1 = \frac{2!}{1!1!} = 2\)
   Total number of ways for this case = \(15 \times 2 = 30\)

   Case 3: Selecting 5 skilled men:
   Number of ways to select 5 skilled men from 6 = \(^{6}C_5 = \frac{6!}{5!1!} = 6\)

   Summing all the cases:
   Total number of ways to select 5 men such that at least 3 are skilled = 20 + 30 + 6 = 56

   (ii) At least one of them may be the unskilled man:
   Total number of ways to select 5 men from 8 = \(^{8}C_5 = \frac{8!}{5!3!} = 56\)

   Number of ways to select 5 skilled men from 6 = \(^{6}C_5 = \frac{6!}{5!1!} = 6\)

   Total number of ways to select 5 men such that at least one is unskilled = 56 - 6 = 50

Q.

In a group of 10 students, 6 are boys. In how many ways can 4 students are slected for mathematical competitions so as to include

  1. exactly two boys
  2. atleast two boys
  3. at most two girls

  (i) At least two boys:
   Case 1: Selecting 2 boys and 2 girls:
   Number of ways to select 2 boys from 6 = \(^{6}C_2 = \frac{6!}{2!4!} = 15\)
   Number of ways to select 2 girls from 4 = \(^{4}C_2 = \frac{4!}{2!2!} = 6\)
   Total number of ways for this case = \(15 \times 6 = 90\)

   Case 2: Selecting 3 boys and 1 girl:
   Number of ways to select 3 boys from 6 = \(^{6}C_3 = \frac{6!}{3!3!} = 20\)
   Number of ways to select 1 girl from 4 = \(^{4}C_1 = \frac{4!}{1!3!} = 4\)
   Total number of ways for this case = \(20 \times 4 = 80\)

   Case 3: Selecting 4 boys:
   Number of ways to select 4 boys from 6 = \(^{6}C_4 = \frac{6!}{4!2!} = 15\)

   Summing all the cases:
   Total number of ways to select 4 students such that at least two are boys = \(90 + 80 + 15 = 185\)

   (ii) At most two girls:
   Case 1: Selecting 0 girls and 4 boys:
   Number of ways to select 4 boys from 6 = \(^{6}C_4 = \frac{6!}{4!2!} = 15\)

   Case 2: Selecting 1 girl and 3 boys:
   Number of ways to select 1 girl from 4 = \(^{4}C_1 = \frac{4!}{1!3!} = 4\)
   Number of ways to select 3 boys from 6 = \(^{6}C_3 = \frac{6!}{3!3!} = 20\)
   Total number of ways for this case = \(4 \times 20 = 80\)

   Case 3: Selecting 2 girls and 2 boys:
   Number of ways to select 2 girls from 4 = \(^{4}C_2 = \frac{4!}{2!2!} = 6\)
   Number of ways to select 2 boys from 6 = \(^{6}C_2 = \frac{6!}{2!4!} = 15\)
   Total number of ways for this case = \(6 \times 15 = 90\)

   Summing all the cases:
   Total number of ways to select 4 students such that at most two are girls = (15 + 80 + 90 = 185)